Sulfur Recovery from Syngas in Pulp Mills with Integrated Black Liquor Gasification

Author:

Hruška Michal,Variny MiroslavORCID,Haydary JumaORCID,Janošovský Ján

Abstract

Research Highlights: As to fill the current knowledge gap and to deliver important findings to the scientific community, efficient sulfur recovery from black liquor gasifier syngas, comprising both gas cleaning and returning sulfur to the pulping process, was modeled and assessed from a techno-economic viewpoint. This manuscript proves that the associated investment and operational costs cannot be neglected and that they impact the black liquor gasification feasibility significantly. To prove its gasification as a sustainable and more efficient processing route over its combustion in recovery boilers, a substantial process efficiency improvement and operating costs reduction must be targeted in future research. Background and Objectives: Sulfur compounds found in black liquor partly turn into hydrogen sulfide during gasification and exit the gasifier in the syngas. Their efficient recovery in their sulfidic form to the pulping process is of utmost importance. Current studies focus on black liquor gasifier syngas desulfurization only. Materials and Methods: A mathematical model of two H2S absorption units from a 66.7 tDS/h (1600 tons dry solids per day) black liquor gasification process to 20 ppm H2S content in cleaned syngas using either white liquor plus NaOH or N-methyldiethanolamine (MDEA) was created using the Aspen Plus simulation software. Results: The results show that CO2 co-absorption significantly increases the lime kiln load: +20% in the MDEA alternative and +100% in the other one. The MDEA alternative requires almost the same investment costs but by around USD 9.7 million (>50%) lower annual operating costs compared to the other one. Economic evaluation was based on the assumed discount rate of 5% and on the expected plant operation time of 25 years. The estimated total investment cost of the whole plant is around USD 170 million for both alternatives. The whole plant including this alternative exhibits a positive net present value (over USD 19 million), an internal rate of return of 5% and a profitability index of 1.12, whereas that with the other alternative is economically infeasible. Conclusions: The MDEA-based syngas cleaning technology represents a more efficient and economically feasible option of sulfur recovery. A major drawback of both modeled syngas cleaning technologies is that their estimated annual operating costs significantly reduce the expected profit margin of gasification over the traditional black liquor combustion in a recovery boiler. Syngas cleaning and sulfur recovery have to be further optimized to reach a significant cut down in operational costs to improve the economic feasibility of black liquor gasification.

Publisher

MDPI AG

Subject

Forestry

Reference54 articles.

1. World Energy Technology Outlook 2050—WETO H2http://projects.mcrit.com/foresightlibrary/attachments/article/961/weto-h2_en.pdf

2. BP Statistical Review of World Energy, 67th Editionhttps://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf

3. Energy Statistics—An Overviewhttps://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview

4. Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3