Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires

Author:

Kozak Daniel,Henderson Hayley,de Castro Mazarro AlejandroORCID,Rotbart DemiánORCID,Aradas Rodolfo

Abstract

Conventional urban drainage approaches have historically focused on the volume of stormwater to be displaced with the aim of moving it as fast and as far as possible from the city. They have also been negligent regarding water quality and the inherent value of watercourses to distinct forms of life in cities, from maintaining biodiversity to providing recreational space for residents. Contemporary responses to these issues point to a paradigm change: They seek to replicate the natural mechanisms of absorption and retention, with the aim of addressing pluvial drainage needs closer to the site of origin. This article aims to explore the extent to which such an approach could be accommodated in one dense and highly impervious setting in the Global South. Specifically, it compares urban morphology, land value, hydraulic performance, and politico-institutional conditions of grey and Blue-Green Infrastructure (BGI) scenarios in Buenos Aires, Argentina. The findings suggest that even in very dense and impervious urban basins it is possible to implement BGI with a significant effect in achieving urban-sustainability goals. Furthermore, the results demonstrate that it is possible to deculvert watercourses in line with Compact City principles through the development of hybrid BGI/grey-infrastructure systems.

Funder

Lincoln Institute of Land Policy

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference64 articles.

1. Sistemas urbanos de drenaje sostenible (SUDS);Castro Fresno;Interciencia,2005

2. The SuDS Manual 2015,2015

3. Policy Position Statement on Deculverting of Water Courses,2007

4. Urban Stormwater Governance: The Need for a Paradigm Shift

5. Learning to Live with Rivers;Fleming,2001

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3