Stretching Method-Based Damage Detection Using Neural Networks

Author:

Daskalakis EmmanouilORCID,Panagiotopoulos Christos G.ORCID,Tsogka ChrysoulaORCID

Abstract

We present in this paper a framework for damage detection and localization using neural networks. The data we use to train the network are m×d pixel images consisting of measurements of the relative variations of m natural frequencies of the structure under monitoring over a period of d-days. To measure the relative variations of the natural frequencies, we use the stretching method, which allows us to obtain reliable measurements amidst fluctuations induced by environmental factors such as temperature variations. We show that even by monitoring a single natural frequency over a few days, accurate damage detection can be achieved. The accuracy for damage detection significantly improves when a small number of natural frequencies is monitored instead of a single one. More importantly, monitoring multiple natural frequencies allows for damage localization provided that the network can be trained for both healthy and damaged scenarios. This is feasible under the assumption that damage occurs at a finite number of damage-prone locations. Several results obtained with numerically simulated data illustrate the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3