Study on the Deposition Uniformity of Triple-Target Magnetron Co-Sputtering System: Numerical Simulation and Experiment

Author:

Zhu GuoORCID,Xiao Baijun,Chen Ganxin,Gan Zhiyin

Abstract

The uniformity of magnetron-sputtered films can be evaluated using an analytical model whose key parameters, such as included angle cosine and distance between infinitesimal elements, are so far calculated based on targets-substrate geometric relation. This existing computation scheme is not applicable in a triple-target magnetron co-sputtering system with complex targets-substrate geometric relation. In this work, a computation method was proposed to calculate the deposition uniformity of a triple-target magnetron co-sputtering system based on the analytical model. In this method, the coordinates of the infinitesimal elements on the substrate and targets were calibrated in an identical global coordinate system via coordinate transformation, such that the key parameters of the analytical formula can be evaluated by vector computation. The effects of the target-substrate angle and target-substrate distance on the deposition uniformity of a given triple-target magnetron co-sputtering system were investigated via numerical simulation and experiment, respectively. Simulation results were consistent with experimental results. Relevant evolution mechanisms of the deposition uniformity of the co-sputtering system with the variations of target-substrate parameters were discussed in detail based on the simulation results. It is expected that this computation approach can be employed to provide theoretical guidance for the fast and economical fabrication of high-quality, large-area film and composite films.

Funder

Natural Science Foundation of Hunan Province

general project of Hunan provincial education department

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3