Evolution Mechanism of Sputtered Film Uniformity with the Erosion Groove Size: Integrated Simulation and Experiment

Author:

Zhu Guo1ORCID,Yang Yutong1,Xiao Baijun1,Gan Zhiyin2

Affiliation:

1. School of Mechanical & Electrical Engineering, Hunan City University, Yiyang 413000, China

2. School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Abstract

In this work, Cu thin films were experimentally fabricated at different target–substrate distances by 2-inch and 4-inch circular planar magnetron targets. Meanwhile, the sputtering deposition of Cu thin films was investigated via an integrated multiscale simulation, where the magnetron sputtering discharge was modeled using the Monte Carlo (MC) method, and the sputtered particle transport was simulated using a coupled Monte Carlo (MC) and molecular dynamics (MD) method. Experimental results indicated that, as the target–substrate distance increased from 30 to 120 mm, the film thickness distribution of the 2-inch target sputtering changed from a bell-shaped curve to a line-shaped curve, while that of the 4-inch target sputtering varied from a saddle-shaped curve to a line-shaped curve. The simulation results were accordant with the experimental results. The simulation results revealed that, at a target–substrate distance of 30 mm, the sputtering particle flow from the 2-inch target overlapped strongly near the substrate center, leading to a bell-shaped film thickness distribution, while the increased diameter of the erosion groove on the 4-inch target reduced the superposition effect of the sputtering particle flow near the substrate center, resulting in a saddle-shaped film thickness distribution. In addition, when the target–substrate distance ranged from 30 to 120 mm, the film thickness uniformity of 4-inch target sputtering was superior to that of 2-inch target sputtering, and the underlying mechanism was discussed in detail.

Funder

Hunan Provincial Natural Science Foundation of China

excellent youth funding from the Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3