Microstructure, Fatigue Properties and Stress Concentration Analysis of 6005 Aluminum Alloy MIG Welded Lap Joint

Author:

Li Yanlei,Yang Shanglei,Peng Zeng,Wang Zhentao,Gao Zihao

Abstract

This paper studies the microstructure and mechanical properties of MIG (Melt Inert Gas) lap welded 6005 aluminum alloy plates. Microstructure analysis (OM) of the joint showed that 15~30 μm small grains were observed at the fusion line. Mechanical analysis shows that the small grains are broken by shielding gas and molten pool flow force. Hardness test shows that there is a softening zone (41~43 HV) in HAZ much lower than BM and WZ. The low cycle fatigue test showed that the performance of lap joint decreased sharply, and the fatigue strength of weld decreased significantly, which was only 27.34% of the base metal. The fatigue fracture (SEM) of the weld observed slip band cracking and a large number of brittle fracture characteristics. Using the stress concentration factor Kt for analysis, it was found that the cause of brittle fracture was mostly stress concentration. Lap joint stress concentration model appears in two ways: firstly, at the weld toe, the weld is subjected to eccentric force, secondly, there is a small gap between the two plates at the weld root, which cracks along the direction of 45° of the maximum shear stress.

Funder

National Natural Science Foundation of China

Shanghai Local Universities Capacity Building Project of Science and Technology Innovation Action Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3