Author:
Li Yanlei,Yang Shanglei,Peng Zeng,Wang Zhentao,Gao Zihao
Abstract
This paper studies the microstructure and mechanical properties of MIG (Melt Inert Gas) lap welded 6005 aluminum alloy plates. Microstructure analysis (OM) of the joint showed that 15~30 μm small grains were observed at the fusion line. Mechanical analysis shows that the small grains are broken by shielding gas and molten pool flow force. Hardness test shows that there is a softening zone (41~43 HV) in HAZ much lower than BM and WZ. The low cycle fatigue test showed that the performance of lap joint decreased sharply, and the fatigue strength of weld decreased significantly, which was only 27.34% of the base metal. The fatigue fracture (SEM) of the weld observed slip band cracking and a large number of brittle fracture characteristics. Using the stress concentration factor Kt for analysis, it was found that the cause of brittle fracture was mostly stress concentration. Lap joint stress concentration model appears in two ways: firstly, at the weld toe, the weld is subjected to eccentric force, secondly, there is a small gap between the two plates at the weld root, which cracks along the direction of 45° of the maximum shear stress.
Funder
National Natural Science Foundation of China
Shanghai Local Universities Capacity Building Project of Science and Technology Innovation Action Program
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献