A Methodology for Predicting the Phase Fraction and Microhardness of Welded Joints Using Integrated Models

Author:

Song Ji-Hyo1,Yi Kyung-Woo1

Affiliation:

1. Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Understanding the phase transformation and fraction affected by thermal changes is imperative for ensuring the safety of a welded joint. This study proposes a methodology for predicting the phase transformation and fraction of a welded joint using an integrated model. The integrated model includes a heat transfer model and procedures for predicting phase fraction and microhardness. The heat transfer model was developed to simulate the heat transfer in a welded joint and obtain the thermal cycles. The procedure consists of obtaining the peak temperature, austenite fraction, prior austenite grain size (PAGS), and t8/5 (the cooling time between 800 and 500 °C). A database was constructed based on the continuous cooling transformation (CCT) diagram using PAGS and t8/5 as the variables. The phase fraction was then predicted by considering the PAGS with t8/5 from the database. The predicted phase fraction and microhardness were in good agreement with those determined experimentally, demonstrating the reliability of the methodology. This methodology provides a more realistic understanding of phase transformation and facilitates the prediction of the phase fraction and microhardness under various welding conditions that have experimental limitations.

Funder

Institute of Engineering Research, Seoul National University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3