Real Drive Well-to-Wheel Energy Analysis of Conventional and Electrified Car Powertrains

Author:

Orecchini Fabio,Santiangeli AdrianoORCID,Zuccari FabrizioORCID

Abstract

Reducing fuel consumption and global emissions in the automotive sector has been a main focus of vehicle technology development for long time. The most effective goal to achieve the overall sustainability objectives is to reduce the need for non-renewable and fossil resources. Five vehicles, two conventional ICE, two hybrid-electric, and one pure electric powertrain, are considered. Non-renewable primary energy consumption and CO2 emissions are calculated for each powertrain considered. All data—including calculated values—are based on the experimental measure of fuel consumption taken in real driving conditions. The data were recorded in an experimental campaign in Rome, Italy on urban, extra-urban streets, and highway on a total of 5400 km and 197 h of road acquisitions. The analysis shows significant reductions in non-renewable fossil fuel consumption and CO2 emissions of hybrid-electric powertrains compared to conventional ones (petrol and diesel engines). Furthermore, a supplementary and very interesting comparison analysis was made between the values of energy consumptions measured during the tests in real driving conditions and the values deriving from the NEDC and WLTP homologation cycles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Industrial Transformation and Advanced Value Chains, Automotive and Mobility Industries. GEAR 2030: Ensuring that Europe Has the Most Competitive, Innovative and Sustainable Automotive Industry of the 2030s and beyond. The Report of the High Level Group on the Competitiveness and Sustainable Growth of the Automotive Industry in the European Unionhttps://ec.europa.eu/docsroom/documents/26081/attachments/1/translations/en/renditions/native

2. RSE (Energy System Research) Elements for a Roadmap for Sustainable Mobility: General Framework and Focus on Road Transport,2017

3. Use of Bio-methane for Auto Motive Application: Primary Energy Balance and Well to Wheel Analysis

4. Automakers’ Powertrain Options for Hybrid and Electric Vehicles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3