A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?

Author:

Papadopoulou Alexandra G.ORCID,Vasileiou GeorgeORCID,Flamos AlexandrosORCID

Abstract

Raising the penetration of renewable energy sources constitutes one of the main pillars of contemporary decarbonization strategies. Within this context, further progress is required towards the optimal exploitation of their potential, especially in terms of dispatchability, where the role of storage is considered vital. Although current literature delves into either storage per se or the integration of storage solutions in single renewable technologies, the comparative advantages of each technology remain underexplored. However, high-penetration solutions of renewable energy sources (RES) are expected to combine different technological options. Therefore, the conditions under which each technology outperforms their counterparts need to be thoroughly investigated, especially in cases where storage components are included. This paper aims to deal with this gap, by means of assessing the combination of three competing technologies, namely concentrated solar power (CSP), photovoltaics (PV) and offshore wind, with the storage component. The techno-economic assessment is based on two metrics; the levelized cost of electricity and the net present value. Considering the competition between the technologies and the impact storage may have, the paper’s scope lies in investigating the circumstances, under which CSP could have an advantage against comparable technologies. Overall, PVs combined with storage prevail, as the most feasible technological option in the examined storage scenarios—with an LCOE lower than 0.11 €/kWh. CSP LCOE ranged between 0.1327–0.1513 €/kWh for high capacity factors and investment costs, thus larger storage components. Offshore wind—with a lower storage component—had an LCOE of 0.1402 €/kWh. Thus, CSP presents the potential to outperform offshore wind in cases where the latter technology is coupled with high storage requirements. CSP can be viewed as one of the options that could support European Union (EU) decarbonization scenarios. As such, an appropriate market design that takes into consideration and values CSP characteristics, namely dispatchability, is needed at the EU level.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3