Effect of Flexible Operation on Residual Life of High-Temperature Components of Power Plants

Author:

Heo Jun1,Park Mingyu2,Kim Jeong-Myun3,Jang Dong-Won4,Han Ji-Hoon1ORCID

Affiliation:

1. Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea

2. Carbon Neutral Strategy Department, KEPCO Headquarter, 55 Jeollyeok-ro, Naju-si 58322, Republic of Korea

3. Convergence Technology Laboratory, KEPCO Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea

4. Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Republic of Korea

Abstract

Electricity generation from renewable energy sources is emerging as a result of global carbon emission reduction policies. However, most renewable energy sources are non-dispatchable and cannot be adjusted to meet the fluctuating electricity demands of society. A flexible operation process has been proposed as an effective solution to compensate for the unstable nature of renewable energy sources. Thermal load fluctuations during flexible operation may cause creep–fatigue damage to the high-temperature components of thermal power plants, as they are designed with a focus on creep damage under a constant power level. This study investigated the residual life of high-temperature components, such as a superheater tube and a reheater header, to failure under flexible operation conditions using finite element analysis and empirical models. First, we determined an analytical solution for the straightened superheater tube under thermal conditions and compared it with the numerical solution to verify the numerical models. Through the verified finite element model, the creep–fatigue life of the reheater header was estimated by considering flexible operation factors and employing the Coffin–Manson and Larson–Miller models. Although fatigue damage increases with decreasing minimum load and ramp rate, we confirmed that creep damage significantly affects the residual life during flexible operation. In addition, a surrogate model was proposed to evaluate the residual life of the reheater as a function of the flexible operation factors using the machine learning methodology, based on the results of finite element methods. It can be used to predict its residual life without performing complex thermo-structural analysis and relying on empirical models for fatigue and creep life. We expect our findings to contribute to the efficient operation of thermal power plants by optimizing the flexible operation factors.

Funder

Korea Institute of Energy Technology Evaluation and Plannin

the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3