The Concept, Technical System and Heat Transfer Analysis on Phase-Change Heat Storage Backfill for Exploitation of Geothermal Energy

Author:

Zhang Xiaoyan,Xu Muyan,Liu Li,Liu Lang,Wang MeiORCID,Ji Haiwei,Song KI-ILORCID

Abstract

In view of high ground stress, high geothermal temperature, and thermal hazard during deep mineral resource exploitation, the concept of phase-change heat storage backfill was put forward in this study. Further, the corresponding technical system was constructed and the main content involved in technical system, which is the optimized proportion of the backfill slurry added with phase-change materials (PCMs), was examined. Moreover, we elaborated upon the collaborative optimization of a backfill body’s mechanical and thermal properties and the mutual cooperation on backfill mining, geothermal energy exploitation, and simultaneous stope cooling. The heat transfer behavior of a backfill body plays a key role in technology system. We numerically simulated the heat transfer among a backfill body, surrounding rock, and airflow in the heat storage process, as well as the heat transfer between backfill body and cold fluid during the heat release process. The temperature distribution of a backfill body at different heat storage/heat release times—i.e., the temperature distribution and its evolution—with heat transfer were revealed and analyzed. This study can provide theoretical guidance for a phase-change heat storage backfill, as it has an important significance for the collaborative exploitation of mineral resources and geothermal energy.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3