Novel PEG6000–Silica-MWCNTs Shape-Stabilized Composite Phase-Change Materials (ssCPCMs) for Thermal-Energy Storage

Author:

Nistor Cristina Lavinia1ORCID,Gifu Ioana Catalina1ORCID,Anghel Elena Maria2ORCID,Ianchis Raluca1ORCID,Cirstea Cristiana-Diana3,Nicolae Cristian Andi1,Gabor Augusta Raluca1ORCID,Atkinson Irina2ORCID,Petcu Cristian1ORCID

Affiliation:

1. Polymers Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania

2. Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania

3. National Institute for Research and Development in Electrical Engineering ICPE-CA, INCDIE ICPE-CA, 313 Splaiul Unirii Street, 030138 Bucharest, Romania

Abstract

This paper describes the preparation of new PEG6000–silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic–inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study’s main aim was to investigate the optimal amount of PEG6000 that can be added to the fixed sol–gel reaction mixture so that no leakage of PEG occurs after repeated heating–cooling cycles. The findings show that the optimum PEG6000/NCOTEOS molar ratio was 2/1 (~91.5% PEG6000), because both the connected and free PEG chains interacted strongly with the in-situ-generated silica matrix to form a shape-stabilized material while preserving high phase-transition enthalpies (~153 J/G). Morphological and structural findings obtained by SEM, X-ray and Raman techniques indicated a distribution of the silica component in the amorphous phase (~27% for the optimum composition) located among the crystalline lamellae built by the folded chains of the PEG component. This composite maintained good chemical stability after a 450-cycle thermal test and had a good storage efficiency (~84%).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3