Light-Controlled Microbots in Biomedical Application: A Review

Author:

Jamil Md FaiyazORCID,Pokharel MishalORCID,Park KihanORCID

Abstract

The advancement of micro-robotics in recent years has permitted a vast field of active research and application in the biomedical sector. Latest developments in microrobotics point to some ground-breaking work using light for manufacturing as well as actuation. Optical manipulation in three-dimensional space for living biological cells in a minimally invasive manner is crucial for different biomedical applications. This article attempts to provide an overview of the accomplishments and future possibilities of light-powered microbots. An overview of the feasibility of different fabrication techniques and control modalities is compared, along with prospective applications and design considerations of light-powered microbots. A variety of challenges that still prohibit polymeric light-powered microbots from attaining their full potential are pointed out, and viable ways to overcome such challenges are proposed. This study will help future researchers to study and develop the next generation of light-actuated microbots by overcoming the current limitations and challenges in fabrication, control, and design.

Funder

UMass Dartmouth’s Marine and Undersea Technology (MUST) Research Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3