Fabrication and Characterization of a Magnetic 3D‐printed Microactuator

Author:

Rothermel Florian1ORCID,Thiele Simon2,Jung Chris3,Krapf Anna4,Ilse Sven Erik5,Merle Benoit6,Giessen Harald7,Herkommer Alois M.1

Affiliation:

1. Institute of Applied Optics University of Stuttgart Pfaffenwaldring 9 70569 Stuttgart Germany

2. Printoptix GmbH Nobelstr. 15 70569 Stuttgart Germany

3. Mikrop AG Industriestr. 22 Wittenbach 9300 Switzerland

4. Department Materials Science and Engineering Friedrich‐Alexander‐University Erlangen‐Nuremberg Martensstr. 5 91058 Erlangen Germany

5. Max‐Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany

6. Institute of Materials Engineering University of Kassel Mönchebergstr. 3 34125 Kassel Germany

7. 4th Physics Institute University of Stuttgart Pfaffenwaldring 57 70569 Stuttgart Germany

Abstract

AbstractConventional MEMS microactuators have, in recent years, been complemented by 3D‐printed actuatable microstructures fabricated via two‐Photon‐Polymerization (2PP). Herein, a novel compact 3D‐printed magnetically actuatable microactuator with a diameter of 500µm is demonstrated, originally designed for micro‐optical systems. It is fabricated by incorporating a composite of NdFeB microparticles and epoxy resin into a designated reservoir of the printed mechanical structure within a simple post‐processing step. The microactuator structure features mechanical springs, allowing for continuous positioning with large displacement. Mechanical studies by nanoindentation of IP‐S bulk structures reveal a viscoelastic material behavior, described by a two‐element General Kelvin‐Voigt viscoelasticity model. The obtained material parameters are then used to simulate and characterize the spring behavior of the microactuator. Actuation experiments are conducted using an external microcoil. The actuator displacement is measured for triangular current pulses with a peak current of 106 mA and durations of 1 to 100 s, resulting in displacements of 69.1 to 88.9 µm. Hysteretic behavior of the actuator is observed, attributable to viscoelasticity and magnetic properties of the core material. Numerical simulations of the experiment demonstrate this behavior as well. On‐the‐fly demagnetization and the implementation of closed‐loop control allow for both high repeatability and precise positioning.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3