Abstract
In a human-robot collaborative disassembly line, multiple people and robots collaboratively perform disassembly operations at each workstation. Due to dynamic factors, such as end-of-life product quality and human capabilities, the line balancing problem for the human-robot collaborative disassembly line is a dynamic optimisation problem. Therefore, this paper investigates this problem in detail and commits to finding the evolutionary dynamic optimisation. First, a task-based dynamic disassembly process model is proposed. The model can characterise all feasible task sequences of disassembly operations and the dynamic characteristics of tasks affected by uncertain product quality and human capabilities. Second, a multiobjective optimisation model and a feature-based transfer learning-assisted evolutionary dynamic optimisation algorithm for the dynamic human-robot collaborative disassembly line balancing problem are developed. Third, the proposed algorithm uses the balanced distribution adaptation method to transfer the knowledge of the optimal solutions between related problems in time series to track and respond to changes in the dynamic disassembly environment. Then, it obtains the optimal solution sets in a time-varying environment in time. Finally, based on a set of problem instances generated in this study, the proposed algorithm and several competitors are compared and analysed in terms of performance indicators, such as the mean inverted generational distance and the mean hypervolume, verifying the effectiveness of the proposed algorithm on dynamic human-robot collaborative disassembly line balancing.
Funder
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献