Transfer Learning-Assisted Evolutionary Dynamic Optimisation for Dynamic Human-Robot Collaborative Disassembly Line Balancing

Author:

Jin Liang,Zhang Xiao,Fang YilinORCID,Pham Duc TruongORCID

Abstract

In a human-robot collaborative disassembly line, multiple people and robots collaboratively perform disassembly operations at each workstation. Due to dynamic factors, such as end-of-life product quality and human capabilities, the line balancing problem for the human-robot collaborative disassembly line is a dynamic optimisation problem. Therefore, this paper investigates this problem in detail and commits to finding the evolutionary dynamic optimisation. First, a task-based dynamic disassembly process model is proposed. The model can characterise all feasible task sequences of disassembly operations and the dynamic characteristics of tasks affected by uncertain product quality and human capabilities. Second, a multiobjective optimisation model and a feature-based transfer learning-assisted evolutionary dynamic optimisation algorithm for the dynamic human-robot collaborative disassembly line balancing problem are developed. Third, the proposed algorithm uses the balanced distribution adaptation method to transfer the knowledge of the optimal solutions between related problems in time series to track and respond to changes in the dynamic disassembly environment. Then, it obtains the optimal solution sets in a time-varying environment in time. Finally, based on a set of problem instances generated in this study, the proposed algorithm and several competitors are compared and analysed in terms of performance indicators, such as the mean inverted generational distance and the mean hypervolume, verifying the effectiveness of the proposed algorithm on dynamic human-robot collaborative disassembly line balancing.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3