COVID-19 CXR Classification: Applying Domain Extension Transfer Learning and Deep Learning

Author:

Park KwangJinORCID,Choi YoungJinORCID,Lee HongChulORCID

Abstract

The infectious coronavirus disease-19 (COVID-19) is a viral disease that affects the lungs, which caused great havoc when the epidemic rapidly spread around the world. Polymerase chain reaction (PCR) tests are conducted to screen for COVID-19 and respond to quarantine measures. However, PCR tests take a considerable amount of time to confirm the test results. Therefore, to supplement the accuracy and quickness of a COVID-19 diagnosis, we proposed an effective deep learning methodology as a quarantine response through COVID-19 chest X-ray image classification based on domain extension transfer learning. As part of the data preprocessing, contrast limited adaptive histogram equalization was applied to chest X-ray images using Medical Information Mart for Intensive Care (MIMIC)-IV obtained from the Beth Israel Deaconess Medical Center. The classification of the COVID-19 X-ray images was conducted using a pretrained ResNet-50. We also visualized and interpreted the classification performance of the model through explainable artificial intelligence and performed statistical tests to validate the reliability of the model. The proposed method correctly classified images with 96.7% accuracy, an improvement of about 9.9% over the reference model. This study is expected to help medical staff make an integrated decision in selecting the first confirmed case and contribute to suppressing the spread of the virus in the community.

Funder

BRAIN KOREA 21 FOUR

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3