Multi-Channel Transfer Learning of Chest X-ray Images for Screening of COVID-19

Author:

Misra Sampa,Jeon Seungwan,Lee Seiyon,Managuli Ravi,Jang In-Su,Kim ChulhongORCID

Abstract

The 2019 novel coronavirus (COVID-19) has spread rapidly all over the world. The standard test for screening COVID-19 patients is the polymerase chain reaction test. As this method is time consuming, as an alternative, chest X-rays may be considered for quick screening. However, specialization is required to read COVID-19 chest X-ray images as they vary in features. To address this, we present a multi-channel pre-trained ResNet architecture to facilitate the diagnosis of COVID-19 chest X-ray. Three ResNet-based models were retrained to classify X-rays in a one-against-all basis from (a) normal or diseased, (b) pneumonia or non-pneumonia, and (c) COVID-19 or non-COVID19 individuals. Finally, these three models were ensembled and fine-tuned using X-rays from 1579 normal, 4245 pneumonia, and 184 COVID-19 individuals to classify normal, pneumonia, and COVID-19 cases in a one-against-one framework. Our results show that the ensemble model is more accurate than the single model as it extracts more relevant semantic features for each class. The method provides a precision of 94% and a recall of 100%. It could potentially help clinicians in screening patients for COVID-19, thus facilitating immediate triaging and treatment for better outcomes.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3