Author:
Yedukondalu Jammisetty,Karaddi Sahebgoud Hanamantray,Bindu C. H. Hima,Sharma Diksha,Sarkar Achintya Kumar,Sharma Lakhan Dev
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W.: A new steel defect detection algorithm based on deep learning. Comput. Intell. Neurosci. 2021, 1–13 (2021)
2. Sarıkaya, M.; Gupta, M.K.; Tomaz, I.; Pimenov, D.Y.; Kuntoğlu, M.; Khanna, N.; Yıldırım, Ç.V.; Krolczyk, G.M.: A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J. Manuf. Sci. Technol. 35, 624–658 (2021)
3. He, Y.; Song, K.; Meng, Q.; Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)
4. Qing, Y.; Jin, F.; Jian, T.; Xu, W.-G.; Zhu, X.-H.; Yang, B.-J.; Jun, L.; Xie, Y.-Z.; Bo, Y.; Wu, S.-Z.; et al.: Development of an automatic monitoring system for rice light-trap pests based on machine vision. J. Integr. Agric. 19(10), 2500–2513 (2020)
5. Jeon, Y.-J.; Choi, D.-C.; Lee, S.J.; Yun, J.P.; Kim, S.W.: Steel-surface defect detection using a switching-lighting scheme. Appl. Opt. 55(1), 47–57 (2016)