Synthesis of Hydroxyapatite (HAp)-Zirconia Nanocomposite Powder and Evaluation of Its Biocompatibility: An In Vitro Study

Author:

Sivaperumal Vignesh Raj,Mani Rajkumar,Polisetti VeerababuORCID,Aruchamy KanakarajORCID,Oh Taehwan

Abstract

A potential material for dental restorations and bone replacements is calcium phosphate (CaP)-based ceramic material. Nevertheless, its limited ability to withstand thermal processing and weak mechanical strength prevents it from being used in hard tissue engineering. Hydroxyapatite has been extensively used as a CaP-based biomaterial in prosthetic applications. On the other hand, zirconia is an inorganic material that combines outstanding mechanical capabilities with bioinert characteristics. In the present investigation, we demonstrated the reinforcement of zirconia in biomimetic hydroxyapatite (HAp) using a specially designed stir-type hydrothermal reactor to improve the biocompatibility and mechanical stability of bare hydroxyapatite. X-ray diffraction (XRD) analysis showed distinct peak shifts around 31° and 60°, which confirmed the formation of a nanocrystalline HAp-Zirconia composite without any intermediate phases. The size of the synthesized nanocomposite was found to be 30 nm using TEM. Further, the d-spacing value calculated from high-resolution transmission electron microscope (HRTEM) images corresponded to the distinct planes of the HAp (211) and zirconia (311) phases, respectively, in the composite powder. The in vitro cytotoxicity study revealed excellent biocompatibility with MG-63 human osteoblasts. Hence, the zirconia reinforced hydroxyapatite (HZ1) prepared in the present work could be utilized as a successful approach in a variety of hard tissue engineering applications.

Funder

Korean government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3