Fabrication of a Conductive Pattern on a Photo-Polymerized Structure Using Direct Laser Sintering

Author:

Jo Jung-Hoe,Park Min-SooORCID

Abstract

Three-dimensional (3D)-printed electronic technology is considered to have great potential as it can be utilized to make electronic products with complex 3D shapes. In this study, based on a 3D printer with single UV laser equipment, we continuously performed photo-polymerization (PP) and selective metal powder sintering to fabricate a conductive pattern. For this, 3D structures were printed at a low energy using a 355 nm DPSS laser with a galvanometer scanner, which are widely used in PP-type 3D printing, and then the selective sintering of metal powders was performed with a high energy. In order to obtain a high-conductivity pattern by laser sintering, a circuit pattern that could actually be operated was fabricated by experimenting with various condition changes from mixing the metal composite resin to the laser process. As a result, it was found that the optimal result was to irradiate a 0.8 W UV laser with a beam spot size of 50 µm to 50 vol% aluminum composite resin. At this time, an optimal conductive pattern with a resistance of 0.33 Ω∙cm−1 was obtained by setting the pulse repetition rate, scan path interval, and scanning speed to 90 kHz, 10 μm, and 50 mm/s, respectively. This suggested process may be of great help in the manufacturing of practical 3D sensors or functional products in the future.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3