Human-Centered Dynamic Service Scheduling Approach in Multi-Agent Environments

Author:

Jung Yunseo,Kim HyunjuORCID,Suh Kyung-DukORCID,Park Jung-MinORCID

Abstract

As robots become more versatile and combined with a variety of Internet-of-Things technologies, they will be able to serve humans in their daily environments. To provide services by satisfying various human requests, several robots must take turns performing a series of tasks that constitute the service. Because the order of service delivery may differ according to user requests, sequential interdependencies between tasks should be considered. Therefore, we propose a dynamic service scheduler consisting of dynamic sequencing and allocation that can handle scheduling of tasks with user requests such as prioritizing certain tasks or actively changing their order in a multi-agent environment. We experimented with the proposed method in four situation scenarios by building a virtual reality smart office consisting of multiple robots with a robot arm, mobile robot, and smart lamp. The results demonstrated the feasibility and effectiveness of the proposed approach by satisfying the user requirements in different situations. The proposed approach constitutes a basis for further development of efficient in-office and at-home multi-agent environments.

Funder

Korea Institute of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Tool Requirements for Modeling the Execution of Technological Process Operations by Collaborative Robotic System Participants;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. Approach to Efficient Task Allocation and Cost Minimization in Collaborative Robotic Systems;2023 International Russian Smart Industry Conference (SmartIndustryCon);2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3