A Novel Dataset Replenishment Strategy Integrating Time-Series InSAR for Refined Landslide Susceptibility Mapping in Karst Regions

Author:

Yang Yajie1ORCID,Ma Xianglong2ORCID,Ding Wenrong1ORCID,Wen Haijia3ORCID,Sun Deliang4

Affiliation:

1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China

2. College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China

3. School of Civil Engineering, Chongqing University, Chongqing 400045, China

4. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

Abstract

The accuracy of landslide susceptibility mapping is influenced by the quality of sample data, factor systems, and assessment methods. This study aims to enhance the representativeness and overall quality of the sample dataset through an effective sample expansion strategy, achieving greater precision and reliability in the landslide susceptibility model. An integrated interpretative framework for landslide susceptibility assessment is developed using the XGBoost-SHAP-PDP algorithm to deeply investigate the key contributing factors of landslides in karst areas. Firstly, 17 conditioning factors (e.g., surface deformation rate, land surface temperature, slope, lithology, and NDVI) were introduced based on field surveys, satellite imagery, and literature reviews, to construct a landslide susceptibility conditioning factor system in line with karst geomorphology characteristics. Secondly, a sample expansion strategy combining the frequency ratio (FR) with SBAS-InSAR interpretation results was proposed to optimize the landslide susceptibility assessment dataset. The XGBoost algorithm was then utilized to build the assessment model. Finally, the SHAP and PDP algorithms were applied to interpret the model, examining the primary contributing factors and their influence on landslides in karst areas from both global and single-factor perspectives. Results showed a significant improvement in model accuracy after sample expansion, with AUC values of 0.9579 and 0.9790 for the training and testing sets, respectively. The top three important factors were distance from mining sites, lithology, and NDVI, while land surface temperature, soil erosion modulus, and surface deformation rate also significantly contributed to landslide susceptibility. In summary, this paper provides an in-depth discussion of the effectiveness of LSM in predicting landslide occurrence in complex terrain environments. The reliability and accuracy of the landslide susceptibility assessment model were significantly improved by optimizing the sample dataset within the karst landscape region. In addition, the research results not only provide an essential reference for landslide prevention and control in the karst region of Southwest China and regional central engineering construction planning but also provide a scientific basis for the prevention and control of geologic hazards globally, showing a wide range of application prospects and practical significance.

Funder

National Key Research and Development Program of China

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3