Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation

Author:

Sun Deliang1,Chen Danlu1,Zhang Jialan2ORCID,Mi Changlin3,Gu Qingyu1,Wen Haijia2ORCID

Affiliation:

1. Key Laboratory of GIS Application Research, School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

2. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400045, China

3. Linyi Natural Resources Development Service Center, Linyi 276000, China

Abstract

(1) Background: The aim of this paper was to study landslide susceptibility mapping based on interpretable machine learning from the perspective of topography differentiation. (2) Methods: This paper selects three counties (Chengkou, Wushan and Wuxi counties) in northeastern Chongqing, delineated as the corrosion layered high and middle mountain region (Zone I), and three counties (Wulong, Pengshui and Shizhu counties) in southeastern Chongqing, delineated as the middle mountainous region of strong karst gorges (Zone II), as the study area. This study used a Bayesian optimization algorithm to optimize the parameters of the LightGBM and XGBoost models and construct evaluation models for each of the two regions. The model with high accuracy was selected according to the accuracy of the evaluation indicators in order to establish the landslide susceptibility mapping. The SHAP algorithm was then used to explore the landslide formation mechanisms of different landforms from both a global and local perspective. (3) Results: The AUC values for the test set in the LightGBM mode for Zones I and II are 0.8525 and 0.8859, respectively, and those for the test set in the XGBoost model are 0.8214 and 0.8375, respectively. This shows that LightGBM has a high prediction accuracy with regard to both landforms. Under the two different landform types, the elevation, land use, incision depth, distance from road and the average annual rainfall were the common dominant factors contributing most to decision making at both sites; the distance from a fault and the distance from the river have different degrees of influence under different landform types. (4) Conclusions: the optimized LightGBM-SHAP model is suitable for the analysis of landslide susceptibility in two types of landscapes, namely the corrosion layered high and middle mountain region, and the middle mountainous region of strong karst gorges, and can be used to explore the internal decision-making mechanism of the model at both the global and local levels, which makes the landslide susceptibility prediction results more realistic and transparent. This is beneficial to the selection of a landslide susceptibility index system and the early prevention and control of landslide hazards, and can provide a reference for the prediction of potential landslide hazard-prone areas and interpretable machine learning research.

Funder

Natural Science Foundation of Chongqing

National Social Science Funds of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3