Abstract
The interactive roles of zooplankton grazing (top-down) and nutrient (bottom-up) processes on phytoplankton distribution in a temperate estuary were investigated via dilution and nutrient addition experiments. The responses of size-fractionated phytoplankton and major phytoplankton groups, as determined by flow cytometry, were examined in association with zooplankton grazing and nutrient availability. The summer bloom was attributed to nanoplankton, and microplankton was largely responsible for the winter bloom, whereas the picoplankton biomass was relatively consistent throughout the sampling periods, except for the fall. The nutrient addition experiments illustrated that nanoplankton responded more quickly to phosphate than the other groups in the summer, whereas microplankton had a faster response to most nutrients in the winter. The dilution experiments ascribed that the grazing mortality rates of eukaryotes were low compared to those of the other groups, whereas autotrophic cyanobacteria were more palatable to zooplankton than cryptophytes and eukaryotes. Our experimental results indicate that efficient escape from zooplankton grazing and fast response to nutrient availability synergistically caused the microplankton to bloom in the winter, whereas the bottom-up process (i.e., the phosphate effect) largely governed the nanoplankton bloom in the summer.
Funder
Ministry of Oceans and Fisheries
Ministry of Education
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献