Uncertainty Quantification in Machine Learning Modeling for Multi-Step Time Series Forecasting: Example of Recurrent Neural Networks in Discharge Simulations

Author:

Song Tianyu,Ding Wei,Liu Haixing,Wu Jian,Zhou Huicheng,Chu Jinggang

Abstract

As a revolutionary tool leading to substantial changes across many areas, Machine Learning (ML) techniques have obtained growing attention in the field of hydrology due to their potentials to forecast time series. Moreover, a subfield of ML, Deep Learning (DL) is more concerned with datasets, algorithms and layered structures. Despite numerous applications of novel ML/DL techniques in discharge simulation, the uncertainty involved in ML/DL modeling has not drawn much attention, although it is an important issue. In this study, a framework is proposed to quantify uncertainty contributions of the sample set, ML approach, ML architecture and their interactions to multi-step time-series forecasting based on the analysis of variance (ANOVA) theory. Then a discharge simulation, using Recurrent Neural Networks (RNNs), is taken as an example. Long Short-Term Memory (LSTM) network, a state-of-the-art DL approach, was selected due to its outstanding performance in time-series forecasting, and compared with simple RNN. Besides, novel discharge forecasting architecture is designed by combining the expertise of hydrology and stacked DL structure, and compared with conventional design. Taking hourly discharge simulations of Anhe (China) catchment as a case study, we constructed five sample sets, chose two RNN approaches and designed two ML architectures. The results indicate that none of the investigated uncertainty sources are negligible and the influence of uncertainty sources varies with lead-times and discharges. LSTM demonstrates its superiority in discharge simulations, and the ML architecture is as important as the ML approach. In addition, some of the uncertainty is attributable to interactions rather than individual modeling components. The proposed framework can both reveal uncertainty quantification in ML/DL modeling and provide references for ML approach evaluation and architecture design in discharge simulations. It indicates uncertainty quantification is an indispensable task for a successful application of ML/DL.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3