The Simulation of Dielectric Barrier Discharge for Breakdown Voltage in Starch Modification

Author:

Chankuson Pitchasak1ORCID,Chumsri Paramee2,Plodkaew Apinun3ORCID

Affiliation:

1. Department of Physics, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand

2. Department of Culinary Science, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand

3. Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand

Abstract

This paper presents the simulation results for dielectric barrier discharge (DBD) at atmospheric pressure in argon gas for different relative permittivity, granule shape, thickness layer, and granule diameter measurements for starch on the breakdown voltage. DBD is commonly utilized to generate cold plasma for starch modification. The electric field was computed using COMSOL Multiphysics 5.3a software. The breakdown voltage was calculated employing Paschen’s law for this electric field. The voltage was found according to the breakdown criterion for gap distance 0.2–1.0 cm, and then the Paschen curve could be plotted. The results show that the top electrode of the plasma system may be replaced with the parallel plate electrode by a mesh electrode with a bigger mesh size to achieve a lower breakdown voltage. In addition, increasing the relative permittivity and decreasing the thickness layer can reduce the applied voltage for plasma formation. When compared to the sphere and ellipsoid shapes, starch with a polyhedral granule shape requires a significantly lower voltage for breakdown. The starch granule diameter does not affect the breakdown voltage. These findings can be utilized to determine the optimal breakdown voltage for each type of starch modification, contributing to the construction of a high-efficiency plasma production system for starch modification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3