Global Resource Scheduling for Distributed Edge Computing

Author:

Tan Aiping1ORCID,Li Yunuo2,Wang Yan1,Yang Yujie1

Affiliation:

1. College of Information, Liaoning University, Shenyang 110036, China

2. Ming Yang Institute, Shenyang 110163, China

Abstract

Recently, there has been a surge in interest surrounding the field of distributed edge computing resource scheduling. Notably, applications like intelligent traffic systems and Internet of Things (IoT) intelligent monitoring necessitate the effective scheduling and migration of distributed resources. In addressing this challenge, distributed resource scheduling must weigh the costs associated with resource scheduling, aiming to identify an optimal strategy amid various feasible solutions. Different application scenarios introduce diverse optimization objectives, including considerations such as cost, transmission delay, and energy consumption. While current research predominantly focuses on the optimization problem of local resource scheduling, there is a recognized need for increased attention to global resource scheduling. This paper contributes to the field by defining a global resource scheduling problem for distributed edge computing, demonstrating its NP-Hard nature through proof. To tackle this complex problem, the paper proposes a heuristic solution strategy based on the ant colony algorithm (ACO), with optimization of ACO parameters achieved through the use of particle swarm optimization (PSO). To assess the effectiveness of the proposed algorithm, an experimental comparative analysis is conducted. The results showcase the algorithm’s notable accuracy and efficient iteration cost performance, highlighting its potential applicability and benefits in the realm of distributed edge computing resource scheduling.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3