Collaborative Learning Based Straggler Prevention in Large-Scale Distributed Computing Framework

Author:

Deshmukh Shyam1ORCID,Thirupathi Rao Komati1ORCID,Shabaz Mohammad2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, AP, India

2. Arba Minch University, Arba Minch, Ethiopia

Abstract

Modern big data applications tend to prefer a cluster computing approach as they are linked to the distributed computing framework that serves users jobs as per demand. It performs rapid processing of tasks by subdividing them into tasks that execute in parallel. Because of the complex environment, hardware and software issues, tasks might run slowly leading to delayed job completion, and such phenomena are also known as stragglers. The performance improvement of distributed computing framework is a bottleneck by straggling nodes due to various factors like shared resources, heavy system load, or hardware issues leading to the prolonged job execution time. Many state-of-the-art approaches use independent models per node and workload. With increased nodes and workloads, the number of models would increase, and even with large numbers of nodes. Not every node would be able to capture the stragglers as there might not be sufficient training data available of straggler patterns, yielding suboptimal straggler prediction. To alleviate such problems, we propose a novel collaborative learning-based approach for straggler prediction, the alternate direction method of multipliers (ADMM), which is resource-efficient and learns how to efficiently deal with mitigating stragglers without moving data to a centralized location. The proposed framework shares information among the various models, allowing us to use larger training data and bring training time down by avoiding data transfer. We rigorously evaluate the proposed method on various datasets with high accuracy results.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference43 articles.

1. MapReduce

2. Improving mapreduce performance using smart speculative execution strategy;Q. Chen;Institute of Electrical and Electronics Engineers Transactions on Computers,2013

3. Wrangler: Predictable and faster jobs using fewer resources.;N. J. Yadwadkar

4. LADRA: Log-based abnormal task detection and root-cause analysis in big data processing with Spark

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3