Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella

Author:

Dahiya Divakar1,Nigam Poonam Singh2ORCID

Affiliation:

1. Wexham Park Hospital, Wexham Street, Slough Berkshire SL2 4HL, UK

2. Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK

Abstract

Dextran, a microbial metabolite of diverse molecular configurations, can be biosynthesized employing selected strains of characterized species of bacteria. Dextran molecules are secreted as an extracellular polysaccharide in the culture medium of the bacterial fermentation system. This microbially produced polymer of glucose possesses multi-faceted characteristics such as its solubility in different solvents and formation of dextran solutions of needed viscosity. Several preparations can be formulated for the desired thermal and rheological properties. Due to such multifunctional characteristics, dextran with different structural specifications is a desired polysaccharide for clinical, pharmaceutical, and food industry commercial applications. Dextran and its derivative products with various molecular weights, in a range of high and low, have established their uses in drug delivery and in analytical devices using columns packed with polysaccharide gel. Therefore, being a neutral raw material, the resourcefulness of dextran preparations of different molecular weights and linkages in their polymer configuration is important. For this purpose, several studies have been performed to produce this commercially important polysaccharide under optimized bacterial cultivation processes. This article aims to overview recently published research reports on some significant applications of dextran in the pharmaceutical and food industries. Studies conducted under optimized conditions in fermentation processes for the biosynthesis of dextran of diverse molecular configurations, which are responsible for its multifunctional properties, have been summarized. Concise information has been presented in three separate tables for each group of specific bacterial species employed to obtain this extracellular microbial polysaccharide.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3