Microbial Exopolysaccharides: Structure, Diversity, Applications, and Future Frontiers in Sustainable Functional Materials

Author:

Mouro Cláudia12ORCID,Gomes Ana P.12ORCID,Gouveia Isabel C.12ORCID

Affiliation:

1. FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal

2. AEROG-LAETA—Laboratório Associado em Energia, Transportes e Aeronáutica, Aerospace Sciences Department, Faculty of Engineering, University of Beira Interior, 6200-358 Covilhã, Portugal

Abstract

Exopolysaccharides (EPSs) are a diverse class of biopolymers synthesized by microorganisms under environmental stress conditions, such as pH, temperature, light intensity, and salinity. They offer biodegradable and environmentally friendly alternatives to synthetic polymers. Their structural versatility and functional properties make them unique in various industries, including food, pharmaceuticals, biomedicine, cosmetics, textiles, petroleum, and environmental remediation. In this way, among the well-known EPSs, homopolysaccharides like dextran, bacterial cellulose, curdlan, and levan, as well as heteropolysaccharides like xanthan gum, alginate, gellan, and kefiran, have found widespread applications in numerous fields. However, recent attention has focused on the potential role of extremophile bacteria in producing EPSs with novel and unusual protective and biological features under extreme conditions. Therefore, this review provides an overview of the functional properties and applications of the commonly employed EPSs. It emphasizes their importance in various industries and scientific endeavors while highlighting the raised interest in exploring EPSs with novel compositions, structures, and properties, including underexplored protective functionalities. Nevertheless, despite the potential benefits of EPSs, challenges persist. Hence, this review discusses these challenges, explores opportunities, and outlines future directions, focusing on their impact on developing innovative, sustainable, and functional materials.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3