Iterative Equalization and Decoding over an Additive White Gaussian Noise Channel with ISI Using Low-Density Parity-Check Codes

Author:

Cuc Adriana-Maria1ORCID,Morgoș Florin Lucian1,Grava Adriana-Marcela1,Grava Cristian1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Information Technology, University of Oradea, 410087 Oradea, Romania

Abstract

In this article we present an iterative system of equalization and decoding to manage the intersymbol interference over an additive white Gaussian noise (AWGN) channel. Following the classic turbo equalization scheme, the proposed system consists of low-density parity-check (LDPC) coding at the transmitter side; we applied a Log maximum a posteriori probability (Log-MAP) equalizer and min-sum LDPC decoding at the receiver side. The equalizer and decoder, linked through interleaving and deinterleaving, iteratively update each other’s information. We performed the performance analysis of the proposed system, bit error rate (BER) vs. signal-to-noise ratio (SNR), considering three different impulse responses of the channel (h). Our experimental results indicated that increasing the number of iterations performed by the LDPC decoder from 10 to 20 during the iterative process of equalization and decoding leads to better outcomes. The proposed system was compared with turbo equalization and separate equalization, performed before the decoding process with minimum mean-square error (MMSE) and LDPC decoding, in terms of BER vs. SNR, considering the three different h. Based on the analyzed results, it can be concluded that the equalization performance depends on both the impulse responses of the channel and the chosen decoding and equalization method; therefore, the equalization method does not always offer good results for any h.

Funder

Romanian Ministry of Research, Innovation and Digitisation

University of Oradea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3