Accurate Channel Estimation and Adaptive Underwater Acoustic Communications Based on Gaussian Likelihood and Constellation Aggregation

Author:

Wang Liang,Qiao Peiyue,Liang Junyan,Chen Tong,Wang XinjieORCID,Yang Guang

Abstract

Achieving accurate channel estimation and adaptive communications with moving transceivers is challenging due to rapid changes in the underwater acoustic channels. We achieve an accurate channel estimation of fast time-varying underwater acoustic channels by using the superimposed training scheme with a powerful channel estimation algorithm and turbo equalization, where the training sequence and the symbol sequence are linearly superimposed. To realize this, we develop a ‘global’ channel estimation algorithm based on Gaussian likelihood, where the channel correlation between (among) the segments is fully exploited by using the product of the Gaussian probability-density functions of the segments, thereby realizing an ideal channel estimation of each segment. Moreover, the Gaussian-likelihood-based channel estimation is embedded in turbo equalization, where the information exchange between the equalizer and the decoder is carried out in an iterative manner to achieve an accurate channel estimation of each segment. In addition, an adaptive communication algorithm based on constellation aggregation is proposed to resist the severe fast time-varying multipath interference and environmental noise, where the encoding rate is automatically determined for reliable underwater acoustic communications according to the constellation aggregation degree of equalization results. Field experiments with moving transceivers (the communication distance was approximately 5.5 km) were carried out in the Yellow Sea in 2021, and the experimental results verify the effectiveness of the two proposed algorithms.

Funder

General Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3