Assessment of Insulation against Contact Heat and Radiant Heat of Composites with TiO2-ZrO2-Al and Parylene C Coatings Intended for Protective Gloves Supported by Computational Fluid Dynamics

Author:

Miśkiewicz Pamela1,Puszkarz Adam K.2ORCID

Affiliation:

1. Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, 116 Żeromskiego Street, 90-924 Lodz, Poland

2. Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, 116 Żeromskiego Street, 90-924 Lodz, Poland

Abstract

This article concerns research on the use of two types of coatings (parylene C and TiO2-ZrO2-Al) in multilayer composites with potential use in metallurgical protective gloves to improve their insulation against contact heat and radiation heat. To evaluate the thermal safety of the glove user, the composites were examined under the conditions of exposure to contact heat (using a heating cylinder, according to EN ISO 12127-1) and radiant heat (using a copper plate calorimeter, according to EN ISO 6942). Moreover, heat transfer through composites exposed to the heat of a hot plate was examined using thermography. The experimental studies were supported by heat transfer simulations through 3D models of composites. The contact heat method showed that composites achieved insulation against contact heat for both contact temperatures Tc, but composites with parylene C have a longer tt of 9 s (for Tc = 100 °C) and 7 s (250 °C) compared to composites with TiO2-ZrO2-Al. The radiant heat method showed that composites achieved the fourth (highest) level of RHTI24 under exposure to a radiant heat flux of 20 kW m−2. The modeling results showed that the parylene C coating increases the thermal barrier of the composite by approximately 10%, while the TiO2-ZrO2-Al coating increases it by 2%. The applied research techniques demonstrated the usefulness of using both types of coatings in the design of metallurgical protective gloves based on multilayer composites.

Funder

Lodz University of Technology

Institute of Material Science of Textiles and Polymer Composites Poland

Regional Operational Programme for Łódzkie

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3