Evaluation of Selected Thermal Changes in Textile Materials Arising in the Wake of the Impact of Heat Radiation

Author:

Machnowski WaldemarORCID,Wąs-Gubała JolantaORCID

Abstract

The detection of changes in the morphological and chemical structure of four cotton/polyester blend fabrics and their constituent fibres caused by thermal radiation was the purpose of the study. Relatively short exposure times, i.e., 20 s, 25 s, 30 s and 40 s, of fabrics for an incident heat flux density of 10 kW/m2 were applied so that they did not cause changes visible to the naked eye. Such experimental conditions have been selected to resemble the ones that may occur during firefighting, rescue operations, some professional activities as well as during criminal events. The assumption that using the sequence of physicochemical methods, i.e., optical microscopy, scanning electron microscopy and FTIR spectroscopy, will make it possible to identify selected thermal changes in examined materials caused by a short-term temperature increase has been positively verified. Out of applied techniques, scanning electron microscopy showed the highest efficiency in tracking morphological changes in fibres occurring under the influence of heat radiation, while the FTIR method allows for the identification of thermal changes in the chemical structure of cotton fibres. Optical microscopic methods were also characterised by relatively high usefulness in the detection of thermal changes, especially in terms of the physical microstructure of PES fibres. The changes occurring in the fibres due to the action of heat radiation depend not only on the thermal behaviour of a particular type of fibre but also on the structural parameters of the examined textiles, i.e., porosity, and the mutual position of particular types of fibres in the three-dimensional structure of yarns and fabrics. Moreover, the studies revealed the presence of tiny, deformed balls at the ends of the thermoplastic fibres, visible on the surface of some original polyester-cotton textiles, caused by a singeing technological process, which should be taken into account during interpretation of analytical findings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3