Use of Plackett–Burman and Box–Behnken Designs to Optimize Bioelectricity Production from Winery Residues

Author:

Devesa-Rey Rosa1ORCID,Arce Elena2,Cartelle Alberto1,Suárez-García Andrés1ORCID

Affiliation:

1. Defense University Center, Spanish Naval Academy, University of Vigo, Plaza de España, 36920 Marín, Spain

2. Department of Industrial Engineering, Ferrol Polytechnic University School, University of A Coruña, 15403 A Coruña, Spain

Abstract

This study aimed to estimate the bioelectricity production process using a vinasse solution through the application of Plackett–Burman and Box–Behnken designs. An electrochemical cell was constructed using Arduino to measure the potential difference between an anode and cathode immersed in a vinasse solution, which is a byproduct of wine production containing organic compounds and ions that undergo redox reactions. The Plackett–Burman design identified the most influential variables among eight previously selected (concentration of the electrolyte, pH, temperature, stirring, addition of NaCl, yeast dose and electrode:solution ratio). The results showed that the most influencing variables were the vinasse concentration and stirring and a peak of 306 mV could be observed for a 100 mL experiment. The third most influential variable regarding the process was NaCl addition, which showed its high influence at larger times. Based on these results, the Box–Behnken design was used to determine the possible ranges of variation of the independent variables (vinasse concentration, stirring and NaCl dose) to maximize the bioelectricity production. Therefore, with the combination of the intermediate concentrated vinasse (1:3 v/v ratio) and stirring, a peak of 431.1 mV could be observed when adding 2% NaCl after 15 min of the experiment. In what concerns the instant bioelectricity, measured after 1 min of the experiment, values up to 437.9 mV could be observed although yeast and/or NaCl are necessary at short times. This study provides insights into the bioelectricity production process from vinasse, contributing to the understanding and potential for sustainable energy generation.

Funder

Defense University Center at the Spanish Naval Academy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3