Optimized LOAM Using Ground Plane Constraints and SegMatch-Based Loop Detection

Author:

Liu Xiao,Zhang Lei,Qin Shengran,Tian Daji,Ouyang Shihan,Chen Chu

Abstract

Reducing the cumulative error in the process of simultaneous localization and mapping (SLAM) has always been a hot issue. In this paper, in order to improve the localization and mapping accuracy of ground vehicles, we proposed a novel optimized lidar odometry and mapping method using ground plane constraints and SegMatch-based loop detection. We only used the lidar point cloud to estimate the pose between consecutive frames, without any other sensors, such as Global Positioning System (GPS) and Inertial Measurement Unit (IMU). Firstly, the ground plane constraints were used to reduce matching errors. Then, based on more accurate lidar odometry obtained from lidar odometry and mapping (LOAM), SegMatch completed segmentation matching and loop detection to optimize the global pose. The neighborhood search was also used to accomplish the loop detection task in case of failure. Finally, the proposed method was evaluated and compared with the existing 3D lidar SLAM methods. Experiment results showed that the proposed method could realize low drift localization and dense 3D point cloud map construction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR and IMU Tightly Coupled Localization System Based on Ground Constraint in Flat Scenario;IEEE Open Journal of Intelligent Transportation Systems;2024

2. LIDAR-INERTIAL LOCALIZATION WITH GROUND CONSTRAINT IN A POINT CLOUD MAP;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-05

3. Increased plane identification precision with stereo identification;Robotica;2023-06-19

4. Improved LeGO-LOAM method based on outlier points elimination;Measurement;2023-06

5. Optimized SC-F-LOAM: Optimized Fast LiDAR Odometry and Mapping Using Scan Context;2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3