Biotic Factors Drive Woody Plant Species Diversity across a Relative Density Gradient of Quercus aliena var. acuteserrata Maxim. in the Warm–Temperate Natural Oak Forest, Central China

Author:

Yu Chenyi1,Ren Siyuan2,Huang Yudie1,Wang Guanjie1,Liu Shengyun1,Li Zhenjiang1,Yuan Yabo1,Huang Xin1,Wang Ting1

Affiliation:

1. College of Forestry, Henan Agricultural University, Zhengzhou 450046, China

2. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China

Abstract

Woody plants are crucial components of forest ecosystems and play critical roles in regulating community succession and ecosystem function. Studying woody plant diversity and its influencing factors is thus important for understanding and protecting forest ecosystems. Quercus aliena var. acutiserrata is an important deciduous broadleaf species in the warm–temperate forest of central China. Multiple regression and structural equation modelling were used to discuss the effect of biotic and soil factors on tree species diversity across seven relative density gradients of Q. aliena var. acutiserrata trees in this zone. Our results showed that the following: (1) Species diversity showed significant decreasing trends with increasing relative density of Q. aliena var. acutiserrata. (2) As the relative density of the oak tree increased, some biotic factors (canopy density, and mean DBH) and soil factors (Soil SOC, AP, and AK) all showed significantly increasing trends, whereas the DBH variation (CVD) and soil pH displayed decreasing trends. (3) Biotic factor (e.g., mean DBH, CVD, and competition interaction) had strong direct effect on species diversity, and soil factors exerted indirect roles on tree diversity via biotic factors. Our results provide insight into biodiversity protection and scientific management in this warm–temperate natural oak forest.

Funder

National Natural Science Foundation of China

Pilot Project for Ecological Protection and Restoration of Mountains, Water, Forests, Fields, Lakes, and Grasses in South Taihang, Henan

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3