Climate-affected multi-decadal variations of biogenic volatile organic compounds in Pinus tabuliformis growth rings

Author:

Li Zhenjiang1,Wang Ting1,Liu Shengyun1,Yang Yafeng1,Yang Liu1,Yu Chenyi1,Wang Guanjie1,Hui Yi1,Li Zongshan2,Li Ximei1

Affiliation:

1. Henan Agricultural University

2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences

Abstract

Long-term dynamics of biogenic volatile organic compounds (BVOCs) in trees are rarely reported, despite environmental factors (such as climate change) influencing their growth and the subsequent chemical accumulation. For this, tree growth rings provide a promising biological proxy for the long-time variation and correlation with environmental changes. Therefore, tree rings from Pinus tabuliformis (two stem disks and 40 tree cores) were collected in the Taihang Mountain Macaque National Nature Reserve of China. These samples were divided into seven 5-year resolutions over the 34-year period 1985 to 2018. This enabled analysis of multi-decadal variations of compounds and their correlation with climate variability. A total of 292 BVOCs were detected; however, only 18 compounds were found together across all the 7 growth-periods. Temporal analyses showed decreasing trends for monoterpenes (0.026%/yr) and diterpenes (0.120%/yr), whereas alcohols and oxygenated monoterpenes showed increasing trends at 0.031%/yr and 0.042%/yr, respectively. Correlation analyses showed no obvious link to yearly precipitation, while seasonal temperature had a negative effect on monoterpenes and diterpenes but positive effects on alcohols and oxygenated monoterpenes (all P < 0.05). The present study showed that dendrochronology is a suitable method for re-establishing the biological effects from historical climate variability on key tree species.

Publisher

BioResources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3