Abstract
The critical metal contents of four types of seabed mineral resources, including a deep-sea sediment deposit, are evaluated as potential rare earth element (REE) resources. The deep-sea resources have relatively low total rare earth oxide (TREO) contents, a narrow range of TREO grades (0.049–0.185%), and show characteristics that are consistent with those of land-based ion adsorption REE deposits. The relative REO distributions of the deep-seabed resources are also consistent with those of ion adsorption REE deposits on land. REEs that are not part of a crystal lattice of host minerals within deep-sea mineral deposits are favorable for mining, as there is no requirement for crushing and/or pulverizing during ore processing. Furthermore, low concentrations of Th and U reduce the risk of adverse environmental impacts. Despite the low TREO grades of the deep-seabed mineral deposits, a significant TREO yield from polymetallic nodules and REE-bearing deep-sea sediments from the Korean tenements has been estimated (1 Mt and 8 Mt, respectively). Compared with land-based REE deposits, deep-sea mineral deposits can be considered as low-grade mineral deposits with a large tonnage. The REEs and critical metals from deep-sea mineral deposits are important by-products and co-products of the main commodities (e.g., Co and Ni), and may increase the economic feasibility of their extraction.
Funder
Ministry of Oceans and Fisheries
Korea Institute of Ocean Science and Technology
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献