Behavior of Tin and Antimony in Secondary Copper Smelting Process

Author:

Klemettinen Lassi,Avarmaa Katri,O’Brien Hugh,Taskinen Pekka,Jokilaakso AriORCID

Abstract

Different types of metal-bearing wastes, such as WEEE (Waste Electrical and Electronic Equipment), are important urban minerals in modern society, and the efficient recycling and reuse of their metal values is of key interest. Pyrometallurgical copper smelting is one of the most prominent ways of treating WEEE, however, more accurate experimental data is needed regarding the behavior of different elements during each process stage. This article investigates the behavior of tin and antimony, both commonly present as trace elements in electrical and electronic waste, in secondary (i.e., sulfur-free) copper smelting conditions. The experiments were conducted in oxygen partial pressure range of 10−10–10−5 atm, covering the different process steps in copper smelting. The basis of the equilibrium system was metallic copper–iron silicate slag, with the addition of alumina and potassium oxide to account for the presence of these compounds in the actual industrial process. The results showed that the distribution coefficients of both trace metals, LCu/slag = [wt % Me]copper/(wt % Me)slag, increased significantly as a function of decreasing oxygen pressure, and the addition of basic potassium oxide also had an increasing effect on the distribution coefficient. A brief comparison between EPMA and LA-ICP-MS (electron probe microanalysis and laser ablation–inductively coupled plasma–mass spectrometry), the two in situ analytical techniques used, was also presented and discussed.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3