Experimental Study and Thermodynamic Modelling of Equilibrium Distributions of Ni, Sn and Zn Between Slag and Black Copper for E-Scrap Recycling Applications

Author:

Sineva SvetlanaORCID,Shishin DenisORCID,Prostakova ViktoriaORCID,Lindgren Mari,Starykh RomanORCID,Chen JiangORCID,Jak EvgueniORCID

Abstract

AbstractThe recycling of waste electronic and electrical equipment (WEEE) and other secondary copper-containing materials through the "black copper" process relies on the selective distribution of metals among the gas, slag, and copper-rich liquid phase. This distribution is controlled by the effective oxidation/reduction potential, often expressed in terms of oxygen partial pressure. Separation of Ni and Sn presents a certain challenge in recycling though black copper route due to similar distribution coefficients over a wide range of oxygen partial pressures and possibly can be improved by optimizing the slag chemistry. This study provides experimental information on the distribution of Ni, Sn, and Zn between fayalite slags or calcium ferrite slags and copper-rich metal at 1250°C. The study uses high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA) techniques along with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for selected measurements of low concentrations. The oxygen partial pressure is controlled by the CO/CO2/Ar gas flow or by measuring the concentration of copper oxide in the slag. The effect of slag composition in terms of Fe/SiO2 or Fe/CaO ratio is studied by using different holding materials, such as silica (SiO2) ampoule, solid spinel (Fe3O4), wüstite (FeO), or dicalcium ferrite (Ca2Fe2O5). The experimental results are compared with literature data and used to optimize thermodynamic models for FactSage® software. The results demonstrate an opportunity for more effective separation of Ni and Sn using at oxidizing stage by using calcium ferrite slag promoting the formation of Sn4+.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3