Improved Gravitational Search Algorithm Based on Adaptive Strategies

Author:

Yang Zhonghua,Cai YuanliORCID,Li Ge

Abstract

The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3