A New Deep Learning Method with Self-Supervised Learning for Delineation of the Electrocardiogram

Author:

Wu WenwenORCID,Huang YanqiORCID,Wu Xiaomei

Abstract

Heartbeat characteristic points are the main features of an electrocardiogram (ECG), which can provide important information for ECG-based cardiac diagnosis. In this manuscript, we propose a self-supervised deep learning framework with modified Densenet to detect ECG characteristic points, including the onset, peak and termination points of P-wave, QRS complex wave and T-wave. We extracted high-level features of ECG heartbeats from the QT Database (QTDB) and two other larger datasets, MIT-BIH Arrhythmia Database (MITDB) and MIT-BIH Normal Sinus Rhythm Database (NSRDB) with no human-annotated labels as pre-training. By applying different transformations to ECG signals, the task of discriminating signals before and after transformation was defined as the pretext task. Subsequently, the convolutional layer was frozen and the weights of the self-supervised network were transferred to the downstream task of characteristic point localizations on heart beats in the QT dataset. Finally, the mean ± standard deviation of the detection errors of our proposed self-supervised learning method in QTDB for detecting the onset, peak, and termination points of P-waves, the onset and termination points of QRS waves, and the peak and termination points of T-waves were −0.24 ± 10.04, −0.48 ± 11.69, −0.28 ± 10.19, −3.72 ± 8.18, −4.12 ± 13.54, −0.68 ± 20.42, and 1.34 ± 21.04. The results show that the deep learning network based on the self-supervised framework constructed in this manuscript can accurately detect the feature points of a heartbeat, laying the foundation for automatic extraction of key information related to ECG-based diagnosis.

Funder

National Key Research and Development Program; Shanghai Municipal Science and Economic and Informatization Commission Project; Medical Engineering Fund of Fudan University

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3