Two-Stage Optimization Model for Two-Side Daily Reserve Capacity of a Power System Considering Demand Response and Wind Power Consumption

Author:

Dong Jun,Fu Anyuan,Liu Yao,Nie Shilin,Yang Peiwen,Nie Linpeng

Abstract

Today, wind power is becoming an important energy source for the future development of electric energy due to its clean and environmentally friendly characteristics. However, due to the uncertainty of incoming wind, the utilization efficiency of wind energy is extremely low, which means the problem of wind curtailment becomes more and more serious. To solve the issue of wind power large-scale consumption, a two-stage stochastic optimization model is established in this paper. Different from other research frameworks, a novel two-side reserve capacity mechanism, which simultaneously takes into account supply side and demand side, is designed to ensure the stable consumption of wind power in the real-time market stage. Specifically, the reserve capacity of thermal power units is considered on the supply side, and the demand response is introduced as the reserve capacity on the demand side. At the same time, the compensation mechanism of reserve capacity is introduced to encourage generation companies (GENCOs) to actively participate in the power balance process of the real-time market. In terms of solution method, compared with the traditional k-means clustering method, this paper uses the K-means classification based on numerical weather prediction (K-means-NWP) scenario clustering method to better describe the fluctuation of wind power output. Finally, an example simulation is conducted to analyze the influence of reserve capacity compensation mechanism and system parameters on wind power consumption results. The results demonstrate that with the introduction of reserve capacity compensation mechanism, the wind curtailment quantity of the power system has a significant reduction. Besides, the income of GENCOs is gradually increasing, which motivates their enthusiasm to provide reserve capacity. Furthermore, the reserve capacity mechanism designed in this paper promotes the consumption of wind power and the sustainable development of renewable energy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3