A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR

Author:

Dong Jun,Zhang Yaoyu,Wang Yuanyuan,Liu Yao

Abstract

With the development of distributed renewable energy, a micro-energy grid (MEG) is an important way to solve the problem of energy supply in the future. A two-stage optimal scheduling model considering economy and environmental protection is proposed to solve the problem of optimal scheduling of micro-energy grid with high proportion of renewable energy system (RES) and multiple energy storage systems (ESS), in which the risk is measured by conditional value-at-risk (CVaR). The results show that (a) this model can realize the optimal power of various energy equipment, promote the consumption of renewable energy, and the optimal operating cost of the system is 34873 USD. (b) The dispatch of generating units is different under different risk coefficients λ, which leads to different dispatch cost and risk cost, and the two costs cannot be optimal at the same time. The risk coefficient λ shall be determined according to the degree of risk preference of the decision-maker. (c) The proposed optimal model could balance economic objectives and environmental objectives, and rationally control its pollutant emission level while pursuing the minimum operation costs. Therefore, the proposed model can not only reduce the operation cost based on the consideration of system carbon emissions but also provide decision-makers with decision-making support by measuring the risk.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference49 articles.

1. Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand

2. Road map for “internet plus” energy substitution in electricity retail market reform in China;Sun;Power Syst. Technol.,2016

3. Modelling and Optimization of Multi-energy Coupling Hub for Micro-energy Network;Liu;Autom. Electr. Power Syst.,2018

4. Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3