Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain

Author:

Yu Jing1,Liu Jicheng1,Wen Yajing1,Yu Xue1

Affiliation:

1. School of Economics and Management, North China Electric Power University, Beijing 102206, China

Abstract

In recent years, user-side energy storage has begun to develop. At the same time, independent energy storage stations are gradually being commercialized. The user side puts shared energy storage under coordinated operation, which becomes a new energy utilization scheme. To solve the many challenges that arise from this scenario, this paper proposes a community power coordinated dispatching model based on blockchain technology that considers shared energy storage and demand response. First of all, this paper analyzes the operating architecture of a community coordinated dispatching system under blockchain. Combined with the electricity consumption mode of communities using a shared energy storage station service, the interactive operation mechanism and system framework of block chain for coordinated dispatching are designed. Secondly, with the goal of minimizing the total cost of coordinated operation of the community alliance, an optimal dispatching model is established according to the relevant constraints, such as the community demand response, shared energy storage system operation and so on. Thirdly, the blockchain application scheme of community coordinated dispatching is designed, including the incentive mechanism based on the improved Shapley value allocation coordination cost, and the consensus algorithm based on the change rate of users’ electricity utilization utility function. Finally, the simulation results show that the proposed community coordinated dispatching strategy in this paper can effectively reduce the economic cost, reduce the pressure on the power grid, and promote the consumption of clean energy. The combination of the designed cost allocation and other methods with blockchain technology solves the trust problem and promotes the innovation of the power dispatching mode. This study can provide some references for the application of blockchain technology in user-side energy storage and shared energy storage.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response;Sustainability;2023-10-08

2. The Engineering Application of Distributed Clean Energy System Based on Ant Colony Algorithm;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

3. Real Time Command System for Power Network Scheduling Based on Blockchain Technology;2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA);2023-08-11

4. A Power Evolution Game Model and Its Application Contained in Virtual Power Plants;Energies;2023-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3