A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response

Author:

Zhang Yi1,Lan Tian1,Hu Wei1

Affiliation:

1. School of Economics and Management, Shanghai University of Electric Power, Shanghai 201306, China

Abstract

To enhance the low-carbon level and economic performance of microgrid systems while considering the impact of renewable energy output uncertainty on system operation stability, this paper presents a robust optimization microgrid model based on carbon-trading mechanisms and demand–response mechanisms. Regarding the carbon-trading mechanism, the baseline allocation method is utilized to provide carbon emission quotas to the system at no cost, and a ladder carbon price model is implemented to construct a carbon transaction cost model. Regarding uncertainty set construction, the correlation of distributed generation in time and space is considered, and a new uncertainty set is constructed based on historical data to reduce the conservative type of robust optimization. Based on the column constraint generation algorithm, the model is solved. The findings indicate that upon considering the carbon-trading mechanism, the microgrid tends to increase the output of low-carbon units and renewable energy units, and the carbon emissions of the microgrid can be effectively reduced. However, due to the increase in power purchase from the distribution network and the increase in carbon transaction costs, the operating costs of the microgrid increase. Secondly, through the utilization of demand–response mechanisms, the microgrid can achieve load transfer between peaks and troughs. It is imperative to establish appropriate compensation costs for demand and response that balances both economic efficiency and system stability. At the same time, due to the time-of-use electricity price, the energy storage equipment can also play a load transfer effect and improve the system’s economy. Finally, sensitivity analysis was conducted on the adjustment parameters of distributed power sources and loads that have uncertain values. A comparison was made between the deterministic scheduling model and the two-stage robust optimization model proposed in this study. It was proved that this model has great advantages in coordinating the economy, stability and low carbon level of microgrid operations.

Funder

Wei Hu

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3