Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character

Author:

Martín Domingo A.12ORCID,Costafreda Jorge L.1ORCID,Presa Leticia1ORCID,Crespo Elena3ORCID,Parra José Luis1ORCID,Astudillo Beatriz2,Sanjuán Miguel Ángel4ORCID

Affiliation:

1. Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas, 21, 28003 Madrid, Spain

2. Laboratorio Oficial para Ensayos de Materiales de Construcción (LOEMCO), C/Eric Kandell, 1, 28906 Getafe, Spain

3. Dpto, Mineralogia y Petrologia, Fac. CC. Geologicas, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain

4. Department of Science and Technology of Building Materials, Civil Engineering School, Technical University of Madrid, 28040 Madrid, Spain

Abstract

The speed at which climate change is happening is leading to a demand for new pozzolanic materials that improve the quality of cements and, at the same time, limit the emission of greenhouse gases into the atmosphere. The main objective of this work is the detailed characterization of an ignimbrite sample (IGNS) to demonstrate its effectiveness as a natural pozzolan. To meet this objective, a series of tests were carried out. In the first stage, mineral and chemical analyses were performed, such as petrographic analysis by thin section (TSP), X-ray diffraction (XRD), oriented aggregate (OA), scanning electron microscopy (SEM) and X-ray fluorescence (XRF). In the second stage, the following technical tests were carried out: chemical quality analysis (QCA), pozzolanicity test (PT) and mechanical compressive strength (MS) at 7, 28 and 90 days, using mortar specimens with ignimbrite/cement formulation (IGNS/PC): 10, 25 and 40% to establish the pozzolanic nature of the ignimbrite. The results of the mineral and chemical analyses showed that the sample has a complex mineralogical constitution, consisting of biotite mica, potassium feldspar, plagioclase, smectite (montmorillonite), quartz, volcanic glass, iron, titanium and manganese oxides, chlorite and chlorapatite. On the other hand, the technological tests revealed the pozzolanic nature of the sample, as well as visible increases in the mechanical compressive strengths in the three proportions, the most effective being IGNS/PC:10% and IGNS/PC:25% at 7, 28 and 90 days of setting. The results obtained could be applied in the formulation of new pozzolanic cements with ignimbrite as a natural pozzolanic aggregate.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3