Mineral, Chemical and Technical Characterization of Altered Pyroxenic Andesites from Southeastern Spain for Use as Eco-Efficient Natural Materials

Author:

Martín Domingo A.12ORCID,Costafreda Jorge L.1ORCID,Sanjuán Miguel A.3ORCID,Costafreda-Velázquez Jorge L.4

Affiliation:

1. Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas, 21, 28003 Madrid, Spain

2. Laboratorio Oficial para Ensayos de Materiales de Construcción (LOEMCO), Fundación Gómez Pardo, C/Eric Kandell, 1, 28906 Getafe, Spain

3. Department of Science and Technology of Building Materials, Civil Engineering School, Technical University of Madrid, 28040 Madrid, Spain

4. Departamento de Construcciones, Universidad de Holguín, Avenida XX Aniversario, Vía Guardalavaca, Piedra Blanca, Holguín 80100, Cuba

Abstract

Climate change is already an undeniable reality, and it is a direct consequence of our society’s lifestyle and the indiscriminate use of certain materials, such as Portland cement, which causes the emission of gases and waste that contributes to the greenhouse effect. The object of this work is to present the results obtained from research on pyroxenic andesites that have become altered to zeolite and their use as alternative, eco-efficient materials that improve the quality of cement through a standardized partial substitution. In this work, four samples of pyroxenic andesites altered to zeolites (PAAZ) and two samples of unaltered andesites (UPA) were analyzed. The methods used in this study are as follows: petrography of thin section (PTS), chemical analysis of X-ray fluorescence (XRF) and phase determination by X-ray diffraction (XRD). Other tests were carried out to determine the quality of the PAAZ from a technical and practical application point of view, such as chemical analysis of pozzolanicity (CPT) at 8 and 15 days, as well as mechanical compression tests at 2, 7, 28 and 90 days. Petrographic and phase analyses show that the original mineral components of the samples such as pyroxene, amphibole, plagioclase and mica were leached and replaced by more than 90% with mordenite and smectite. XRF analyses indicates an anomalous rise in SiO2, a drastic reduction in alumina Al2O3 and a significant increase in alkaline compounds over alkaline-earth compounds in samples of altered pyroxenic andesites (PAAZ) with respect to samples of unaltered andesites (UPA). The pozzolanicity test establishes that the samples of unaltered andesites do not behave like pozzolans at 8 or 15 days; however, altered andesites experienced remarkable pozzolanic reactivity in the same periods. The mechanical compression tests carried out on specimens made with PAAZ and Portland cement showed a growing increase in mechanical resistance from 2 days (15.2 MPa) to 90 days (72.1 MPa). These results suggest that pyroxenic andesites altered to zeolite can be an ideal alternative to partially replace Portland cement, which in turn could contribute to the preservation of the environment and a more rational use of traditional resources.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3