Structural Analysis and Paleostress Evolution in the Imiter Silver Mining Region, Eastern Anti Atlas, Morocco: Implications for Mineral Exploration

Author:

Atif YoussefORCID,Soulaimani Abderrahmane,Ait Lahna AbdelhakORCID,Yaagoub Driss,Youbi NasrrddineORCID,Pour Amin BeiranvandORCID,Hashim MazlanORCID

Abstract

Development and concentration of many ore deposits at the regional and district scales closely depend on structural geology, especially in polydeformed basements. The superposition of many deformation periods highlights the complexity of the structural context and expected potential location of mineralization zones. The formation and concentration of hydrothermal ore deposits is highly dependent on structural controls. On the NE flank of the Saghro massif (Eastern Anti-Atlas, Morocco), the Imiter silver mining region has been affected by multiple tectonic events since the Precambrian and throughout the Phanerozoic. In this investigation, a structural analysis of the different geological units revealed multi-stage deformation, beginning with the late Pan-African-Cadomian event, and ending with the last Cenozoic exhumation of the area. At least eight tectonic regimes have been identified. The Imiter basement, formed by the Cryogenian-early Ediacaran “flysch-like” Saghro Group, has been folded in low-grade metamorphic conditions, followed by an ENE-WSW brittle compressive event. These deformations occurred before to the early Ediacaran during the compressional and/or transpressional late Pan-African-Cadomian events (600–580 Ma). The unconformably overlaying deposition of the late Ediacaran Ouarzazate Group takes place in a WNW-ESE extensional setting and then involved in a NNW-SSE compressional event that occurred concurrently with a regional exhumation and erosion stages. A similar extensional event appears to have controlled the middle Cambrian sedimentation, the oldest Paleozoic deposits in this area. During the late Carboniferous, Variscan shortening was recorded by NW-SE transpressional deformation responsible for combined dextral strike-slip and southward thrusts. The Imiter silver mining region is part of the Moroccan Sub-Meseta Zone along with Paleozoic inliers of the Skoura and Tamlelt on the southern side of the High Atlas. The Mesozoic evolution began with the Late Triassic NNW-SSW transtensional tectonic regime with a northeast trending CAMP (Central Atlantic Magmatic Province) dyke during the Pangea breakup. Ultimately, the Imiter silver mining region experienced NNW-SSE Atlasic shortening during the uplift of the adjacent High Atlas. Over time, the direction of implemented tectonic stress and its effect on various geological units can elucidate the relationship between tectonism and hydrothermal silver mineralization in the Imiter region. In conclusion, structural analysis and investigation of paleostress development can be one of the most important factors for successful exploration plan and resource recovery in the Imiter region. An analysis of geological structures in determining feasible mineralization zones is crucial for future safe mining operation in the study area and can be extrapolated to other ore mining regions.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3